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ABSTRACT

A variational principle is formulated for the inverse problem of full-field reconstruction of three-
dimensional plate/shell deformations from experimentally measured surface strains. The
formulation is based upon the minimization of a least squares functional that uses the complete
set of strain measures consistent with linear, first-order shear-deformation theory. The
formulation, which accommodates for transverse shear deformation, is applicable for the analysis
of thin and moderately thick plate and shell structures.  The main benefit of the variational
principle is that it is well suited for C0-continuous displacement finite element discretizations,
thus enabling the development of robust algorithms for application to complex civil and
aeronautical structures. The methodology is especially aimed at the next generation of aerospace
vehicles for use in real-time structural health monitoring systems.

1. INTRODUCTION

Structural health monitoring is recognized as a key technology that is needed for the
development of the next generation of aerospace vehicles. The principal purpose is real-time
monitoring of the aerospace vehicle structural integrity using a network of in-flight sensors that
measure quantities such as temperature and strain. Using such measurements, general structural
deformations need to be identified, together with the material or structural failure modes. A great
deal of recent work on structural health monitoring can be found in [1, 2].

Real-time ÒreconstructionÓ of full-field structural displacements is also essential  technology
for providing feedback to the actuation and control systems for the morphed wings of the next
generation aircraft. It is envisioned that load-carrying structural components will be instrumented
with a network of sensors measuring surface strains (e.g., fiber optic sensors with Bragg
gratings). The reconstruction of the displacement vector at every material point of the structure
(i.e., full-field reconstruction) from a set of strain measurements represents an inverse problem.
Knowing a detailed state of structural deformations also implies that other essential response
quantities such as stress and failure criteria can be assessed.
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Inverse problems are ill posed in the sense that they do not necessarily satisfy conditions of
existence, uniqueness, and stability. Concerning the issue of uniqueness, there may be an infinite
arrangement of strain sensors, the values of measured strains, initial and boundary conditions
that correspond to nearly the same displacement response. Instabilities are generally manifested
by arbitrarily small disturbances in the measured data (such as strains) that may cause great
changes in the solution (displacements).  Tikhonov and Arsenin [3] discussed a general method
of improving robustness of mathematical algorithms by enforcing additional physical (regularity)
constraints by way of a specially constructed regularization term that ensures a certain degree of
smoothness of the approximate solution.  The majority of the inverse algorithms today use some
type of TikhonovÕs regularization.

Although many types of inverse problems and their applications are addressed in the literature
(e.g., refer to [4-7] and references therein), few deal with the problem of the reconstruction of
three-dimensional deformations of bending structures in general. Even  fewer papers focus on the
large-scale computations associated with high-fidelity plate and shell models - the kind of
structures that are most common in modern aerospace design. Almost exclusively, various forms
of least-squares approaches have been used. Bogert et al. [8] used a modal transformation
method that allows the development of suitable strain-to-displacement transformations. Their
approach makes use of a large number of natural vibration modes. When applied to high-fidelity
finite element models, however, the method necessitates a computationally intensive eigenvalue
analysis that requires a detailed description of the elastic and inertial material properties. Jones et
al. [9] used a least-squares approach to solve the inverse problem of reconstructing deformations
of a cantilever plate, where the axial strain was fitted with a cubic polynomial. The strain field
was then integrated with the use of approximate boundary conditions at the clamped end to
obtain plate deflections according to classical bending assumptions. Recently, taking a view on
high-fidelity modeling of aeronautical structures, Shkarayev et al. [10, 11] used a two-step
solution procedure. The first step involves the structural analysis of a plate/shell finite element
model, and the second step applies a least-squares algorithm. The methodology requires
reconstructing the applied loading first, which then leads to the displacements.

It needs to be stated that none of the existing reconstruction methods has been applied and
validated on high-fidelity plate and shell structural models. Moreover, many of these methods
are restricted, by virtue of the inherent assumptions, to static loads and linear deformations, and
cannot be modified to deal with dynamic and nonlinear deformations. None of these methods
satisfies the requirements of a viable structural health-monitoring algorithm. These requirements
are real-time (fast) computations, robustness, and the ability to model high-fidelity plate and
shell structures spanning a variety of response regimes.

This paper will discuss a variational principle that provides the mathematical framework from
which a robust Inverse Finite Element Method (I-FEM) can be developed. The problem of
interest is the reconstruction of structural deformations from experimentally measured strains. A
formulation will be presented that is based upon the minimization of a least squares functional
that uses the complete set of strain measures of a linear, first-order plate theory including the
membrane, bending, and transverse shear deformations. The error functional uses the least-
squares-difference terms comprised of the strains that are expressed in terms of the
displacements and the corresponding strains that are measured experimentally. All strain-
displacement relations are enforced explicitly whereas the analytical and measured strains are
matched in the least-squares sense. By virtue of these assumptions, all strain compatibility
relations are explicitly satisfied.  The degree of enforcement of the transverse shear strains to the
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corresponding strain data is controlled by a penalty parameter. When the measured strains are
smoothed a priori, it is shown that an inverse boundary-value problem can be established, giving
rise to a set of Euler equations and the corresponding boundary conditions. A correspondence
between a direct plate analysis and an inverse one is established by way of an analytical plate-
bending example. This paper will conclude with guidelines for developing the inverse finite
element method by discretization with 

€ 

C0-continuous displacement interpolation functions.  The
advantages of this new inverse finite element method, particularly in relation to high fidelity
(large-scale) linear, nonlinear and dynamics problems of plate and shell structural models, will
also be discussed.

2. INVERSE VARIATIONAL FORMULATION

Consider an arbitrary panel depicted in Figure 1 that is defined in a three-dimensional
Cartesian coordinate frame 

€ 

(( ,, ,, ))x y z  on the domain of the form:

€ 

Ω = ⊂ ∈ − ∈ ⊂{ }(( ,, ,, )) ;; [[ ,, ]],, (( ,, ))x y z R z t t x y A R3 2

where 

€ 

2t is the panel thickness, 

€ 

z = 0 denotes its middle plane position, 

€ 

A  denotes the area of
the middle plane, and 

€ 

s is its boundary. The panel is subjected to external loads that may include
the in-plane and out-of-plane components, and is restrained against rigid body motion.

Either conventional strain rosettes or fiber Bragg-grating optic sensors obtain the information
about the state of strain in the panel. Strains are measured on the top and bottom panel surfaces,

€ 

xi i ix y t= ±(( ,, ,, ))  

€ 

(( ,, ))i N=1 . It is implied that all three of the strain components are co-located, i.e.,
they are measured at the same point 

€ 

xi . The restriction of co-located strain components can be
removed if curve-fitting or smoothing methods are used to map the discrete strain measurements
onto smooth and continuous functions (refer to the discussion in section 2.5). The measured
strains are denoted as 

€ 

(( ,, ,, ))ε ε γxx yy xy i
+ + +  and 

€ 

(( ,, ,, ))ε ε γxx yy xy i
− − − , where superscripts Ô

€ 

+ Õ and Ô

€ 

− Õ
represent the top and bottom surface locations. Although more general conditions may be
applicable, it is assumed that the panel is initially flat and its structural response is linear.

The inverse problem at hand is the reconstruction of the three-dimensional deformations of
plate and shell structures based upon the experimentally measured discrete surface strains and
well-defined boundary restraints. The actual loads that cause the deformations are unknown;
however, their influences are represented in the measured strains. The precise nature of the
admissible boundary conditions and the degree of smoothness of the solution displacements will
be established from a variational principle.

2.1 Kinematic relations

 The deformations of plate and flat shell structures are assumed to correspond to the well-
established assumptions of first-order, shear-deformation theory.  Accordingly, the displacement
of any material point of the shell can be described by the three components of the displacement
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vector as (refer to Figure 1 and [12-14]):

€ 

u x y z u z u x y z v z u x y z wx y y x z(( ,, ,, )) ,, (( ,, ,, )) ,, (( ,, ,, ))= + = + =θ θ (1)

where 

€ 

u u x y= (( ,, )) and  

€ 

v v x y= (( ,, )) are the mid-plane displacements in the 

€ 

x  and 

€ 

y  directions,
respectively; 

€ 

θ θx x x y= (( ,, ))  and 

€ 

θ θy y x y= (( ,, ))  are the rotations of the normal about the negative 

€ 

x
and positive 

€ 

y  axes, respectively; and 

€ 

w w x y= (( ,, )) is the deflection variable which is a weighted-
average of the 

€ 

u x y zz (( ,, ,, )) displacement across the shell thickness.
Using Eqs. (1), the strain-displacement relations of linear elasticity theory give rise to the

strain expressions

€ 
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where the in-plane strain measures associated with the stretching of the middle surface are given
as

€ 
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and the bending curvatures have the form

€ 

k u L u( ) ≡


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(4)

The transverse shear strains can also be expressed in terms of the same five kinematic variables
as

€ 

g u L u( ) ≡
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2.2 Compatibility conditions

Consistent with first-order, shear-deformation theory, the eight independent strain measures,

€ 

εx0, 

€ 

εy0 , 

€ 

γ xy0, 

€ 

κ x0, 

€ 

κy0 , 

€ 

κ xy0, 

€ 

γ xz0 , and 

€ 

γyz0, are interrelated through the four equations of
compatibility that can be written as

€ 

∂
∂ ∂

γ ∂
∂

ε ∂
∂

ε
2

0

2

2 0

2

2 0x y y xxy x y= +

€ 

∂
∂ ∂

κ ∂
∂

κ ∂
∂

κ
2

0

2

2 0

2

2 0x y y xxy x y= +    

€ 

2 0 0 0 0
∂
∂

κ ∂
∂

κ ∂
∂

γ ∂
∂

γ
y x x yx xy yz xz= − +









 (6)

€ 

2 0 0 0 0
∂
∂

κ ∂
∂

κ ∂
∂

γ ∂
∂

γ
x y y xy xy xz yz= − +











These equations serve as integrability conditions leading to a compatible set of only five
independent displacement variables 

€ 

u , 

€ 

v , 

€ 

w , 

€ 

θx , and 

€ 

θy .

2.3 Discrete strain measures computed from experimental data

Evaluating Eqs. (2) at the discrete locations 

€ 

(( ,, ,, ))x y z ti i = ± , where the strains are measured, the
relationships between the measured surface strains and the reference plane strains and curvatures
can be readily determined as

€ 
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€ 
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In the above equations, the 

€ 

ε superscript is used to signify the existence of experimental error in
the strain measurements and, hence, in 

€ 

ei
ε  and 

€ 

ki
ε .
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2.4 Deformation modes

The shell whose material properties are symmetric with respect to the mid-plane may undergo
the following deformation modes: (a) Under transverse loading, the resulting deformations are
due to bending only. In this case, the strain distribution is anti-symmetric with respect to the mid-
plane. Hence, since the mid-plane does not stretch 

€ 

(( ))e = 0 , the surface strain values at a given

€ 

(( ,, ,, ))x y ti i ±  location differ only by a sign.  Therefore, the strains need only be measured on one of
the bounding surfaces, e.g., 

€ 

(( ))z t= .  (b) Under purely in-plane loading, the shell is undergoing
only stretching deformations, the strains are uniform through the thickness 

€ 

(( ))k = 0 . In this case,
a single surface strain measurement is also sufficient. Finally, (c) In a completely general case,
exhibiting both stretching and bending, both the top and bottom surface strains need to be
measured.

2.5 Role of curve fitting and smoothing techniques

Experimental strain data can be treated analytically by applying curve fitting or smoothing
techniques [15]. In this manner, the six strain measures in Eqs. (7) and (8) can be represented as
continuous functions that are defined everywhere in the reference mid-plane of the shell. The
vectors containing the curve-fitted or smoothed mid-plane strains and curvatures will henceforth
be denoted as 

€ 

eε  and 

€ 

kε , where the Ò

€ 

i Ó subscript is omitted to differentiate these continuous
quantities from the discrete ones.

A recently developed smoothing procedure, by Tessler and co-workers [16-17], called the
Smoothing Element Analysis (SEA), can be used to minimize the experimental error in each
strain component. The method, which is based upon finite element approximations, yields a
smoothed (strain) field that is represented by a piece-wise, nearly 

€ 

C1-continuous polynomial
function having 

€ 

C0-continuous first-order derivatives. The benefit of the latter aspect is that it
enables the first-order derivatives of 

€ 

kε  to be used in computing the transverse shear strains 

€ 

gε .
The method involves the use of appropriate equilibrium equations of first-order theory.  Hence,
for problems where shear deformation is important, SEA-based treatment of strain data may be
desirable. The mathematical details for determining the transverse shear strains 

€ 

gε  will be
discussed in a separate report.

2.6 Variational statement

A least-squares variational principle is formulated enabling the development of robust
algorithms for solving the inverse problem of reconstruction of three-dimensional deformations
of plate, shell and general built-up structures from experimental strain measurements. For the
case when the measured strain data can be represented with continuous functions, the
minimization of the error functional results in an inverse boundary value problem described by
Euler equations and consistent boundary conditions. The variational principle can also be
discretized in a piece-wise continuous manner by using the displacement finite element method.
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Accounting for the membrane, bending and transverse shear deformations, an extremum of a
least squares functional is sought for a fixed value of a scalar penalty parameter 

€ 

λ > 0

€ 

Φλ ε ε ελ(( ))u e u e k u k g u g= ( ) − + ( ) − + ( ) −
2 2 2

(9)

where the squared norms can be written in the form of the normalized Euclidean norms as

€ 

e u e e u e( ) − ≡ −[ ]
=
∑ε ε2 2

1

1
N i i

i

N

(( ))

€ 

k u k k u k( ) − ≡ −[ ]
=
∑ε ε2 2

1

A
N i i

i

N

(( ))
(10)

   

€ 

g u g g u g( ) − ≡ −[ ]
=
∑ε ε2 2

1

1
N i i

i

N

(( ))

where the following notation has been used 

€ 

•( ) ≡ •( ) =i ix x .

The first term in Eq. (9) corresponds to the membrane deformations whereas the second and
third terms pertain to the bending response. The latter two terms are coupled; however, they are
decoupled from the first term. This is fully consistent with the assumptions of first-order shear-
deformation theory for linear, planar shells possessing a mid-plane material symmetry.

In Eqs. (10), the normalization parameter, 

€ 

N , which represents the number of strain
measurement locations,  factors out.  In a finite element (piece-wise continuous) formulation,
however, 

€ 

N  is replaced by its counterpart at the finite element level, 

€ 

n  (the number of strain
measurements within a finite element) which, generally, does not factor out since individual
elements may have different number of sensors within them.

Furthermore, an assumption in Eqs. (10) is that 

€ 

gi
ε  can be calculated from the strain

measurements. A candidate method for determining these quantities was briefly mentioned in
Section 2.5.  In the majority of practical engineering problems and particularly in the
deformation of thin shells, the 

€ 

gi
ε  contributions are much smaller compared to the curvatures,

€ 

ki
ε . Hence, the 

€ 

gi
ε  contributions can be safely omitted in the formulation.  The third equation of

Eqs. (10) will then be replaced by the 

€ 

L2  squared norm

€ 

g u g u( ) ≡ ∫2 21
A

d d
A

(( )) x y
(11)

If the raw strain data is initially processed by means of curve fitting or smoothing procedures,
such that continuous ÒexperimentalÓ strain measures become available, then the error functional
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in Eq.(9) can be conveniently redefined in terms of the dimensionless 

€ 

L2  squared norms given as

 

€ 

e u e e u e( ) − ≡ −[ ]∫ε ε2 21
A

d d
A

(( )) x y
 

€ 

k u k k u k( ) − ≡ −[ ]∫ε ε2 2
(( )) d d

A
x y

(12)

    

€ 

g u g g u g( ) − ≡ −[ ]∫ε ε2 21
A

d d
A

(( )) x y

where the 

€ 

•( )ε  quantities represent the continuous ÒexperimentalÓ strain measures. These
definitions of the error norms enable the derivation of Euler equations and variationally
consistent boundary conditions that together describe an inverse boundary value problem.

The error functional in Eq. (9) makes use of the complete set (eight) of the strain measures that
is turn satisfy the strain compatibility equations, Eqs. (6). This means that the error functional is
fully regularized since all displacement and strain compatibility conditions are enforced through
the assumptions (3)-(5).

The penalty parameter 

€ 

λ  serves the role of balancing the degree of correlation between the
measured strains and their analytical representations, i.e., 

€ 

λ  controls the enforcement of the
transverse shear and curvature constraints

Transverse shear constraints

€ 

g u g( ) − →i
ε 0 (13)

Curvature constraints

€ 

k u k( ) − →i
ε 0 (14)

This is because the two types of strain measures are inherently coupled.  Since the raw strain
measurements contribute directly to the curvatures (as well as the membrane strains), and the
curvature values are commonly several orders of magnitude greater than the shear strains, the
value of 

€ 

λ  needs to be much smaller than unity, with unity representing the weighting parameter
on the curvature term.  It may also be argued that since the 

€ 

gi
ε  contributions can only be

determined through an additional mathematical treatment of the raw data, which may require
differentiation of the curvature terms as was suggested earlier, the accuracy of the determined 

€ 

gi
ε

strains will necessarily be less than the accuracy of the curvature terms. This again supports the
notion that the curvature constraints should be enforced much closer than the shear constraints,
thus suggesting that 

€ 

λ<<1.

2.7 Euler equations and boundary conditions

Taking the error functional in Eq. (9) defined in terms of the 

€ 

L2  norms in Eqs. (12), and
setting the first variation of the error functional to zero,

€ 

δ λΦ (( ))u = 0 (15)
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where the five displacement (kinematic) variables are being varied, and integrating by parts,
results in five Euler equations and a set of consistent boundary conditions.

The boundary conditions are defined on the two parts of the cylindrical shell boundary
surrounding the mid-plane (refer to Figure 2): (i) 

€ 

Cu  is the part of the mid-plane boundary where
the displacements 

€ 

u v w x y
ε ε ε ε εθ θ,, ,, ,, ,, and  are prescribed (experimentally measured), and (ii)

€ 

Cε  is the part of the boundary where the strain variables 

€ 

ε ε γε ε ε
xo yo yzo,, ,,......,,   are prescribed

(measured), and 

€ 

ν  is the outward normal to 

€ 

Cε  defined by its direction cosines,

€ 

ν ν ν νx y cos x cos y,, (( ,, )),, (( ,, ))[ ] = [ ] (16)

In practice, it is envisioned that only the displacement boundary conditions on 

€ 

Cu  can be
measured with sufficient accuracy, and no attempt will be made to determine the strains

€ 

ε ε γε ε ε
xo yo yzo,, ,,......,,   along the 

€ 

Cε  boundary. From a viewpoint of finite element approximations,
this is directly equivalent with a standard displacement formulation, where only the kinematic
(displacement) boundary conditions are required and not the natural (kinetic) boundary
conditions.

2.7.1 Euler equations due to membrane response

€ 

∂
∂

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂

ε γ
ε γ

ε ε

ε ε

2

2

2

2

2

2 2
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x y x y

x y x y
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xo x xyo y

yo y xyo x
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



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


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












=
+
+












,, ,,

,, ,,
    on 

€ 

A      (17.1)

Kinematic boundary conditions
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v
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






=












ε

ε  on 

€ 

Cu (17.2)

Natural boundary conditions
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ν ∂
∂

ν ∂
∂

ν ∂
∂

ν ∂
∂

ν ∂
∂

ν ∂
∂

ν ε ν γ
ν ε ν γ

ε ε
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x y y

x x y

x xo y xyo
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+

+
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
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










=
+
+












on 

€ 

Cε (17.3)
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2.7.2 Euler equations due to bending response
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   on 

€ 

A (18.1)

Kinematic boundary conditions
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Natural boundary conditions
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on 

€ 

Cε (18.3)

3. BENDING OF A RECTANGULAR PLATE: A DIRECT PROBLEM

In this section, a simple plate-bending problem is considered in order to demonstrate how the
inverse formulation field equations, Eqs. (17)-(18), lead to the reconstruction of the displacement
solution consistent with the measured strain data.  The exact strains are computed from the direct
problem and are used to represent the 

€ 

•( )ε -strains, i.e., the measured strain data.
Consider a direct (forward) problem of a rectangular plate bent under the action of the

distributed transverse loading, q(x,y). According to first-order shear-deformation plate theory,
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the equilibrium  (Euler) equations for a linearly elastic orthotropic plate have the form
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− + + −

− + − +
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



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w

q x y
x
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θ
θ

0
0

(( ,, ))

on 

€ 

A (19)

where 

€ 

Dij  and 

€ 

Gij  denote, respectively,  the bending and transverse shear elastic stiffness
coefficients of the plate constitutive relations. Assuming that the principal material directions are
coincident with the Cartesian axes, the constitutive equations express the bending moments in
terms of the curvatures as,

€ 

M

M

M

D D

D D

D

x

y

xy
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y

xy


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0 0
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(20)

and the transverse shear forces in terms of  the transverse shear strains as

€ 

Q

Q
G

G
x

y

xz

yz











=
















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
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55

44

0

0

0
0

γ
γ . (21)

For a simply-supported rectangular plate of thickness 

€ 

2t with the lateral dimensions 

€ 

a  and 

€ 

b
(

€ 

x a∈ [ , ]0 ,

€ 

y b∈ [ , ]0 ), that is subjected to the sinusoidal transverse loading (refer to Figure 3),

€ 

q x y q x y( , ) sin sin /a, /b)= ( ) ( ) = =0 α β α π β π(( (22)

defined positive when acting in the positive 

€ 

z -direction, the exact distributions of the
displacement variables are given by the trigonometric functions

€ 

w W x y= ( ) ( )0 sin sinα β ,  

€ 

θ α βx x x y= ( ) ( )Θ 0 sin cos ,  

€ 

θ α βy y x y= ( ) ( )Θ 0 cos sin  (23)

where 

€ 

W0 , 

€ 

Θx0 , and 

€ 

Θy0  define the constant amplitudes of these variables. These solutions
satisfy exactly the simply-supported edge boundary conditions of the plate

Along the edges 

€ 

x a= 0,, ::  

€ 

w  =

€ 

θx =

€ 

M D Dx y x x y≡ +11 12θ θ, , =0
Along the edges 

€ 

y b= 0,, ::  

€ 

w  =

€ 

θy =

€ 

M D Dy y x x y≡ +12 22θ θ, , =0 (24)
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The substitution of Eqs.(22)and (23) into Eqs. (19) yields a system of algebraic equations from
which the values of the amplitudes 

€ 

W0 , 

€ 

Θx0 , and 

€ 

Θy0 are readily determined. This system of
equations takes on the form

€ 

α αβ β
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
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)) Θ

Θ
(25)

The above system is easily solved in terms of the unknown amplitudes.  The exact expressions
for 

€ 

W0 , 

€ 

Θx0 , and 

€ 

Θy0 need not be stated explicitly. Henceforth, these amplitudes will be
regarded as the exact values satisfying Eqs. (25).

4. BENDING OF A RECTANGULAR PLATE: AN INVERSE PROBLEM

The field equations of the inverse bending formulation are solved herein using the strain
measures derived from the exact displacement solution of the direct problem, i.e., by introducing
Eqs. (23) into Eqs. (4) and (5). These strains will be used to represent the 

€ 

•( )ε -strains, i.e.,

€ 

κ
κ
κ
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β α β
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The displacement field of the inverse solution is assumed to have the trigonometric form

€ 

w W x yI= ( ) ( )sin sinα β ,

€ 

θ α βx xI x y= ( ) ( )Θ sin cos ,  

€ 

θ α βy yI x y= ( ) ( )Θ cos sin  (27)

where 

€ 

WI , 

€ 

ΘxI , and 

€ 

ΘyI  define the constant amplitudes of the displacement variables. The
above displacement assumptions satisfy exactly the simply-supported edge boundary conditions
consistent with the inverse formulation, Eqs. (18.2, 3),

Along the edges 

€ 

x a x y= = =0 1 0,, (( ,, ))::ν ν  

€ 

w  =

€ 

θx =

€ 

κ x0=0
Along the edges 

€ 

y b x y= = =0 0 1,, (( ,, ))::ν ν  

€ 

w  =

€ 

θy =

€ 

κy0=0 (28)
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Substituting Eqs. (26) and (27) into Eqs. (18.1), after straightforward algebraic manipulations,
results in the system of equations
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α β β α
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Equations (29) have a trivial solution for the unknown vector resulting in,
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showing that the inverse formulation reconstructs the exact displacement field of the direct
problem precisely.

5. REMARKS ON RANGE OF APPLICABILITY AND FINITE ELEMENT METHOD

The range of applicability of this formulation spans both linear and geometrically nonlinear
deformation regimes, where the latter can be addressed by way of alternative formulations. For
example, nonlinear strain-displacement relations can be used instead of the linear ones or,
alternatively, an incremental linear analysis can be undertaken to model the large displacement
response. The error functional and the corresponding relations are also readily reducible to the
special cases of Timoshenko as well as the classical (Bernoulli-Euler) beam deformations.

The least-squares error functional in Eq. (9) can be used to develop displacement-based finite
element methods. The finite element discretization of the error functional is closely related to
formulating plate and shell (as well as beam) finite elements based upon first-order shear-
deformation theory. Since the highest order derivatives in the error functional are of order one,
the kinematic variables need not exceed 

€ 

C0-continuity (smoothness). Thus robust and
computationally efficient discretizations can be constructed. Relevant formulations of this type
have already been developed for linear and nonlinear plate and shell analyses, for example, in
 [18-20].

6. CONCLUSIONS

A variational principle was introduced to solve the inverse problem of reconstructing the three-
dimensional deformations in plate and flat shell structures using discrete strain measurements.
The least squares variational principle was formulated with the use of the complete set of strain
measures consistent with first-order shear-deformation theory. Euler equations and consistent
boundary conditions were derived from the variational principle.  The methodology does not
require elastic or inertial material properties. It was demonstrated on a plate-bending problem
that the inverse formulation reconstructs the exact displacement response of a direct (forward)
problem once the exact strains are used to represent measured strains. The appeal of the
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formulation is its perfect suitability for formulating C0-continuous displacement finite elements.
With the full power of the finite element method, it will be possible to apply the robust
algorithms to real-time structural health monitoring applications of high-fidelity aeronautical
structures.

A forthcoming report will address the inverse finite element formulation, its implementation in
a general-purpose finite element code, and computational and experimental validation.
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Figure 1. Notation for the flat shell.
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Figure 2. Notation for the shell middle plane.

Figure 3. Simply-supported rectangular plate under sinusoidal transverse loading.
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